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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: .
positions momenta

r_Aﬁ r—%
H(q;5955 - -sqns P15P2s+ - -5Px)

The time evolution of an orbit (trajectory) with initial
condition

P(0)=(q,(0), q,(0),.--,qx(0), P1(0); P5(0);---;px(0))

is governed by the Hamilton’s equations of motion
dp, _ 6H dq; _©JH

2

at  oq, ~ dt o,
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Variational Equations

We use the motation X = (qy,qy----GxsP1-Pss----Py)"- The
deviation vector from a given orbit is denoted by

v = (dx,, dx,,..., dx )T, with n=2N

The time evolution of v is given by

E =_J-P-v
dt

where

Bensttin & (Galesni 1070, in Lavel and Grassillon (=de). op cit 03
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the so-called variational equations:

0. -L %
J={ o ’*J,Pf ":H_ ij=1,2.



Example (Henon-Heils system)

1, 2 1, ., 2 LA
H=E(px+p},)+5(1 £y’ | +x }’-g}’j

Hamilton’s equations of motion: FK = P.

o L
dpi=_Bdeqi=aH 5 )

dt &q, dt op, p, =-X-2Xy

P, =-y-x"+y’
In order to get the variational equations we linearize the above equations by
substituting x, y, px, py with x+v,, y+v,, p,+v;, p,tv, where v=(v,,v,,v;,v,) is
the deviation vector. So we get:

Puriaa s -X-V, - 2(X+V, ) (y+V,) =

/p{Jrvs = 7{"51'2}&'23“?:'23"?1'2\3{’: =
V, =-v, -2yv, - 2XV,
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Example (Hénon-Heils system)

VarmtmnW —=-J.P-v \

(v} (0 0 -l o“f’1+2y 75 S
Vod ~ogldy 050, X Hodx . abg0y- 0~ (ilgey
R ! O (M | M 1)
(¥4 O o Di D5 0 0 0 IJ\V-LJ
v, = ¥, X—p,
gy \ _I_ Y =Py
vV, = -V, -2xv,-2yv, P, =-X-2xy
vV, = -v,=2xv, +2yv, p,=-y-x'+y’
Complete set of equations
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Poincare Surface of Section (PSS)

We can constrain the
studvy of am N+1
degree of freedom
Hamiltonian system
to a 2N-dimensional
subspace of the
general phase space.

v |

= A
-

s
X sl l:__._,..-:n-]

Lisherman & Lichtenhers 1003 Regwlar and Chastic Thnamics. Springsr.

In general we can assume a PSS of the form g, ,=constant. Then only
variables q;,qs....sQxnsPysPsse--:Py ar'e needed to describe the evolution
of an orbit on the PSS, since p,.; can be found from the Hamiltonian.

In this sense an N+1 degree of freedom Hamiltonian
system corresponds to a 2N-dimensional symplectic map.
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Symplectic Maps

Consider an n-dimensional symplectic map 1. In this case
we have discrete time.

The evolution of an orbit with initial condition

P(0)=(x,(0), x,(0),...,x,(0))
is governed by the equations of map 1

P(i+1)=T P(i) , i=0,1,2,...

The evolution of an initial deviation vector

¥(0) = (dx,(0), dx,(0),..., dx,(0))
is given by the corresponding tangent map

e
oP|

1
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Example — 2D map

Equations of the map:
X X, o= Xy kR
; =T{ N At (mod 2)
| X, X, X, = X,-vsin(x; t+Xx,)

Tangent map:

vit+1)= _P V(1)

Sopre oo

1 1 dx,
-veos(x, +X,) 1-veos(x; +x,) )\ dx,
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Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given
orbit characterize the mean exponential rate of divergence
of trajectories surrounding it.

Consider an orbit in an M-dimensional phase space with
initial condition x(0) and an initial deviation vector from
it v(0). Then the mean exponential rate of divergence is:

Hv(t)\l
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Lyapunov Exponents

There exists an M-
dimensional basis {&} of v
such that for any v, ¢ takes
on one of the M (possibly
nondistinct) values

" pa !'i'.' i

i s SR
c;(x(0)) = o(x(0), &) .
which are the Lyvapunov '
exponents.

Benattin & (Geleani. 1970, in Lawsl and Greesillon (sds ). op cit €3

In autonomous Hamiltonian systems the M exponents are ordered in
pairs of opposite sign numbers and two of them are 0.
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Computation of the Maximal

Lyapunov Exponent

Due to the exponential growth of v(t) (and of d(t)=||v()||)
we renormalize v(t) from time to time.

Mearby trajectory

Ty I Vout
[
d J 2
H+ 3 _‘,_-——_——-____L
M I-'||I I'-|I &
{
Y ; T Trajectory
, as L]

Figure 5.6. Numernical calculation of the maximal Liapunov characteristic expo-
nent. Here y = x 4+ v and = is a finite interval of time {(after Benettin er al., 1976).

Then the Maximal Lyapunov exponent is computed as

1 n
6, =lim— ) Ind.
1 F1—» 0 nré :
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Maximal Lyapunov Exponent

o ‘; g P-'iz_:-‘c:lr:q:_h‘g_‘j::l:;lm
st ;
LS
0 ‘\:::M:h.
= o A Q"x
6,=0 - Ordered motion ' R
. : l."'\.\,'.jl"-‘_%j':.:“% rder
6,#0 = Chaotic motion 10-3 R
'H.. k-"'\x.
15? 102 104

Figure 5.7. Behavior of o , at the intermediate energy £ = 0,125 for initial points

taken in the ordered (curves 1-3) or stochastic {curves 4-6) regions (after Benettin
et al., 1976).

Benettin et al. (1980) proposed an algorithm for the
computation of all Lyapunov exponents
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Other methods

Frequency Analysis (Laskar J., 1990, Icarus, 88, 257 — Laskar
et al., 1992, Physica D, 56. 253 — Papaphilippou Y. & Laskar
J., Astron. Astroph, 1996, 307, 427 & 1998, 329, 451)

Dynamical Spectra (Froeschlé et al., 1993, Cel. Mech., 56,
307 — Voglis N. & Contopoulos G., 1994, J. Phys. A, 27,
4899— Voglis et al., 1999, Cel. Mech., 73, 211 & 1998, Phys.
Bev ' 51030

Fast Lyapunov Indicator (FLI) (Froeschl¢ et al., 1997, Cel.
Mech., 67, 41 — Froeschl¢ et al., 1997, Planet. Space Sci., 43,
881)

0-1 test (Gottwald G. A. & Melbourne 1., 2004, Proc. R. Soc.
Lond. A, 460, 603)
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The Smaller Alignment Index
(SALI) method

Work in collaboration with
*  Chris Antonopoulos
* Thanos Manos
«  Tassos Bountis
*  Michael Vrahatis

Papers
*  Skokos Ch. (2001) J. Phys. A, 34, 10029.
*  Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N.
(2003) Prog. Theor. Phys. Supp., 150, 439.
*  Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N.
(2004) J. Phys. A, 37, 6269.

Ch. Skokos Complexity in Science and Society 15



Definition of the Smaller
Alignment Index (SALI)

Consider the n-dimensional phase space of a conservative dvnamical
system (a symplectic map a Hamiltonian flow).

An orbit in that space with initial condition :
P(0)=(x,(0), x,(0).....x,(0))

and a deviation vector
v(0)=(dx,(0), dx,(0)...., dx,(0))

The evolution in time (in maps the time is discrete and is equal to the
number N of the iterations) of a deviation vector is defined by:

*the variational equations (for Hamiltonian flows) and
*the equations of the tangent map (for mappings)
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Detinition of the SALI

We follow the evolution in time of two different initial
deviation vectors (e.g. v,(0), v,(0)), and define SALI
(Skokos Ch., 2001, J. Phys. A, 34, 10029) as:

-~ -

v, (t) Y (t) v,(t) N (t)
i) [V O |[v®] [v.®]

e -

SALI(t) = min -

When the two vectors tend to coincide or become opposite

SALI(t) — 0
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Behavior of the SALI

2D maps
SALI—0 both for ordered and chaotic orbits

following, however, completely different time rates which
allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps
SALI—0 for chaotic orbits

SAlLI—constant # 0 for ordered orbits
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Behavior of the SALI

Hamiltonian flows and multidimensional maps

The ordered motion occurs on a torus and two different

initial deviation vectors become tangent to different
directions on the torus.

In chaotic cases two Initially different deviation vectors
tend to coincide to the direction defined by the most
unstable nearby manifold.

2D maps
Any two deviation vectors tend to coincide or become
opposite for ordered and chaotic orbits.
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x1+33

(mod 2m)

X, - vsin(x, +Xx,)

For v=0.5 we consider the orbits:

ordered orbit A with initial conditions x,=2, x,=0

chaotic orbit B with initial conditions x;=3, x,=0

a]

loghl
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Applications — 4D map

o R ST S
X; = X,-vsin(x, +x,)-p[l-eos(x; +x, +x,+x,)]

] % £ i (mod 2x)
X, = X,-ksin(x;+x,)-p[l-cos(x, +x,+x;+x,)]

For+=0.35, «=0.1, u=0.1 we consider the orbits:
erdered orbit C with initial conditions x;=0.3, x;=0, x,=0.3, x,=0.

: ' e T e s e L S e
chaotic orbit D) with mitial conditions x,=3, x,=0, x,=0.3, x ;~0.
-1
A
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Applications — Hénon-Heils system

For E=1/8 we consider the orbits with initial conditions:
Ordered orbit, x=0, ¥=0.55, p,=0.2417, p. =0

Chaotic orbit, x=0, y=-0.016, p,.=0.49974, p.=0

Chaotic orbit, x=0, v=-0.01344, p5=[h499‘82; p,=0
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Applications — Hénon-Heils system
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Applications — Hénon-Heils system

0.5
Py
B log(SALD <-12

0.0 B -12 <log(SALI)<-8
-8 < log(SALI) <-4
-4 < log(SALI)

0.5

0.5
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